Atomic-Scale Interfacial Magnetism in Fe/Graphene Heterojunction
نویسندگان
چکیده
Successful spin injection into graphene makes it a competitive contender in the race to become a key material for quantum computation, or the spin-operation-based data processing and sensing. Engineering ferromagnetic metal (FM)/graphene heterojunctions is one of the most promising avenues to realise it, however, their interface magnetism remains an open question up to this day. In any proposed FM/graphene spintronic devices, the best opportunity for spin transport could only be achieved where no magnetic dead layer exists at the FM/graphene interface. Here we present a comprehensive study of the epitaxial Fe/graphene interface by means of X-ray magnetic circular dichroism (XMCD) and density functional theory (DFT) calculations. The experiment has been performed using a specially designed FM1/FM2/graphene structure that to a large extent restores the realistic case of the proposed graphene-based transistors. We have quantitatively observed a reduced but still sizable magnetic moments of the epitaxial Fe ML on graphene, which is well resembled by simulations and can be attributed to the strong hybridization between the Fe 3dz2 and the C 2pz orbitals and the sp-orbital-like behavior of the Fe 3d electrons due to the presence of graphene.
منابع مشابه
Molecular Orientation-Dependent Interfacial Energetics and Built-in Voltage Tuned by a Template Graphene Monolayer
Highly transparent and conductive monolayer graphene was used as a template to tune the crystal orientation of pentacene from generic standing-up (001) to lying-down (022) in neat films. Spatially resolved Kelvin probe force microscopy (KPFM) was used to reveal the energy levels of pentacene thin films grown on substrates with and without the template graphene layer, as well as the energy level...
متن کاملSpin-polarized currents generated by magnetic Fe atomic chains.
Fe-based devices are widely used in spintronics because of high spin-polarization and magnetism. In this work, freestanding Fe atomic chains, the thinnest wires, were used to generate spin-polarized currents due to the spin-polarized energy bands. By ab initio calculations, the zigzag structure was found to be more stable than the wide-angle zigzag structure and had a higher ratio of spin-up an...
متن کاملScanning Tunneling Microscopy of the π Magnetism of a Single Carbon Vacancy in Graphene.
Pristine graphene is strongly diamagnetic. However, graphene with single carbon atom defects could exhibit paramagnetism. Theoretically, the π magnetism induced by the monovacancy in graphene is characteristic of two spin-split density-of-states (DOS) peaks close to the Dirac point. Since its prediction, many experiments have attempted to study this π magnetism in graphene, whereas only a notab...
متن کاملElectric control of magnetism at the Fe/BaTiO3 interface
Interfacial magnetoelectric coupling is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO₃ system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BaTiO₃ dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high-resolution electr...
متن کاملGraphene morphology regulated by nanowires patterned in parallel on a substrate surface
The graphene morphology regulated by nanowires patterned in parallel on a substrate surface is quantitatively determined using energy minimization. The regulated graphene morphology is shown to be governed by the nanowire diameter, the nanowire spacing, and the interfacial bonding energies between the graphene and the underlying nanowires and substrate. We demonstrate two representative regulat...
متن کامل